

THE STATE OF THE CONTROVERSY AND THE UK INDEPENDENT BREAST SCREENING REVIEW PANEL

Nick Ormiston-Smith Member of the secretariat of the UK IBSR and Head of Statistical Information at Cancer Research UK

Contents

- Background to the review
- Controversy
- Mortality Benefit
- Overdiagnosis
- Other Harms
- Summary and Conclusions
- Panel Recommendations

ebruary 10, 2014 ders and Footers> to alter this text

Background

 Screening is effective if able to diagnose a cancer when more treatable – This is true for breast cancer

- 1986. Forrest Report
- 1988. NHS Breast Screening Programmes started
- subsequent large literature
- further trial results
- observational studies
- controversy

The Review

- Set up by Prof Sir Mike Richards (then National Cancer Director, England) and Dr Harpal Kumar (CEO, Cancer Research UK)
- Independent Panel with expertise in epidemiology, medical statistics, screening, breast cancer, patient views **but**
- No member had previously published on breast cancer screening
- A range of experts provided verbal and/or written evidence
- Aim develop an up-to-date (2012) assessment of both the benefits and harms associated with population breast screening programmes.

The Panel

CHAIR: PROF SIR MICHAEL MARMOT,

Director of the Institute of Health Equity, University College London

PROF DOUG ALTMAN

 Director of the Centre for Statistics in Medicine and Cancer Research UK Medical Statistics Group, University of Oxford

PROF DAVID CAMERON

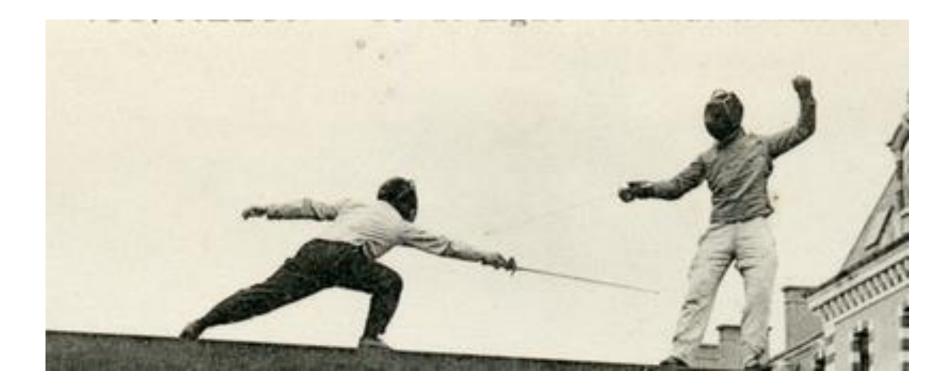
 Clinical Director of the Edinburgh Cancer Research Centre, and Professor of Oncology at Edinburgh University

PROF JOHN DEWAR

 Consultant and Honorary Professor of Clinical Oncology at Ninewells Hospital, Dundee

PROF SIMON THOMPSON

- Director of Research in Biostatistics at the University of Cambridge


MS MAGGIE WILCOX

Patient Advocate

The Controversy

Monday, February 10, 2014
 View <Headers and Footers> to alter this text

The Controversy

Benefits:

Magnitude of the reduction in breast cancer mortality

- Relevance of the original trials
- Interpretation of observational data
- Relevance with reduced mortality from changes in (adjuvant) treatment

Harms:

Overdiagnosis

DCIS

Psychological consequences of screening

Catering for the information needs of women called for screening

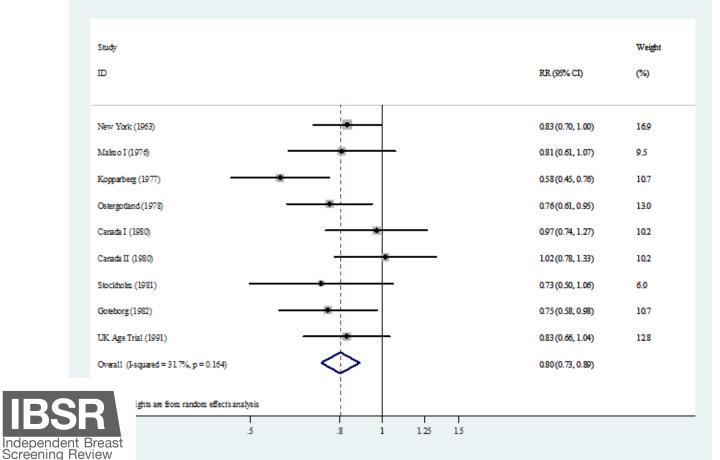
The Review

ebruary 10, 2014 ders and Footers> to alter this text

Mortality

- Consider effect on breast cancer mortality
- Not overall mortality since the studies are insufficiently powered to show an effect
- Not breast cancer survival since affected by lead time bias
- Evidence
- a. randomised controlled trials (RCTs)
- b. observational studies

Mortality - RCTs


- 11 trials (HIP, Malmo I & II, Swedish 2 county, Canada 1 & 2, Stockholm, Goteborg, UK Age and Edinburgh)
- All compared women invited to screening with controls, but otherwise varied
- Randomisation: only Edinburgh excluded because of significant imbalances
- Included all ages
- Cause of death important but not a reason to exclude any trials

Mortality - Meta-analysis

- Random effects not fixed effects
- Based on data in Cochrane Review
- 13 years of follow up

Mortality - Meta-analysis

 Overall relative risk (invited vs. controls) is 0.80 (95% CI 0.73-0.89)

- Reduction in breast cancer mortality 20%
- Some heterogeneity but not statistically significant
- Results not dissimilar to other meta-analyses
- Uncertainty
 - Statistical
 - Relevance of the data to current practice
- Other Methods
 - Generally found higher benefit, but have weaknesses in design

Mortality – Meta analysis

Table 2

Estimates of RR in a comparison of invited women versus control women in the trials of breast cancer screening

This review13-year follow-up in trials reported in the Cochrane Review's random-effects meta-analysis0-80 (0.73-0.89)Cochrane review's0-80 (0.73-0.89)Fixed-effect meta-analysis of the above trials0-81 (0.74-0.87)As above, but excluding women <50 years0.77 (0.69-0.86)Trials considered adequately randomised (Canada, Malmö, and UK Age trial) had RR 0.90 (95% CI 0.79-1.02); trials deemed suboptimally randomised gave RR 0.75 (0.67-0.83). As a compromise between these two estimates, the authors concluded that an RR of 0.85 was plausible0.85US Task Force'NRR 0.86 (95% CI 0.75-0.99) for women aged 50-59 years, and RR 0.68 (0.54-0.87) for those aged 60-69 years. These estimates have an inverse-variance weighted average RR of 0.810.81Canadian Task Force'NRoutinely screening for breast cancer with mammography every 2-3 years for women aged 50-69 years was rated as a weak recommendation based on moderate-quality evidence according to GRADE criteria ⁿ 0.79 (0.68-0.90)		Overall RR (95% CI)
meta-analysisCochrane reviewsFixed-effect meta-analysis of the above trials0.81 (0.74-0.87)As above, but excluding women <50 years	This review	
Fixed-effect meta-analysis of the above trials0.81 (0.74-0.87)As above, but excluding women <50 years		0.80 (0.73-0.89)
As above, but excluding women <50 years0.77 (0.69–0.86)Trials considered adequately randomised (Canada, Malmö, and UK Age trial) had RR 0.90 (95% CI 0.79–1.02); trials deemed suboptimally randomised gave RR 0.75 (0.67–0.83). As a compromise between these two estimates, the authors concluded that an RR of 0.85 was plausible0.85US Task Force³VRR 0.86 (95% CI 0.75–0.99) for women aged 50–59 years, and RR 0.68 (0.54–0.87) for those aged 60–69 years. These estimates have an inverse-variance weighted average RR of 0.810.81Canadian Task Force4VRoutinely screening for breast cancer with mammography every 2–3 years for women aged 50–69 years was rated as a weak recommendation based on moderate-quality0.79 (0.68–0.90)	Cochrane review ⁵	
Trials considered adequately randomised (Canada, Malmö, and UK Age trial) had RR 0.90 (95% CI 0.79–1.02); trials deemed suboptimally randomised gave RR 0.75 (0.67–0.83). As a compromise between these two estimates, the authors concluded that an RR of 0.85 was plausible0.85 US Task Force ⁹ RR 0.86 (95% CI 0.75–0.99) for women aged 50–59 years, and RR 0.68 (0.54– 0.87) for those aged 60–69 years. These estimates have an inverse-variance weighted average RR of 0.810.81 Canadian Task Force ⁴ Routinely screening for breast cancer with mammography every 2–3 years for women aged 50–69 years was rated as a weak recommendation based on moderate-quality0.79 (0.68–0.90)	Fixed-effect meta-analysis of the above trials	0.81 (0.74-0.87)
RR 0.90 (95% CI 0.79–1.02); trials deemed suboptimally randomised gave RR 0.75 (0.67–0.83). As a compromise between these two estimates, the authors concluded that an RR of 0.85 was plausibleUS Task Force®RR 0.86 (95% CI 0.75–0.99) for women aged 50–59 years, and RR 0.68 (0.54– 0.87) for those aged 60–69 years. These estimates have an inverse-variance weighted average RR of 0.810.81Canadian Task Force4Routinely screening for breast cancer with mammography every 2–3 years for women aged 50–69 years was rated as a weak recommendation based on moderate-quality	As above, but excluding women <50 years	0.77 (0.69-0.86)
RR 0.86 (95% CI 0.75-0.99) for women aged 50-59 years, and RR 0.68 (0.54-0.87) for those aged 60-69 years. These estimates have an inverse-variance weighted average RR of 0.81 0.81 Canadian Task Force ⁴ Control of breast cancer with mammography every 2-3 years for women of 0.79 (0.68-0.90) aged 50-69 years was rated as a weak recommendation based on moderate-quality 0.79 (0.68-0.90)	RR 0.90 (95% CI 0.79–1.02); trials deemed suboptimally randomised gave RR 0.75 (0.67–0.83). As a compromise between these two estimates, the authors concluded	0.85
for those aged 60–69 years. These estimates have an inverse-variance weighted average RR of 0-81 Canadian Task Force ⁴ Routinely screening for breast cancer with mammography every 2–3 years for women 0-79 (0-68–0-90) aged 50–69 years was rated as a weak recommendation based on moderate-quality	US Task Force ⁹	
Routinely screening for breast cancer with mammography every 2–3 years for women 0.79 (0.68–0.90) aged 50–69 years was rated as a weak recommendation based on moderate-quality	for those aged 60-69 years. These estimates have an inverse-variance weighted	0.81
aged 50-69 years was rated as a weak recommendation based on moderate-quality	Canadian Task Force ⁴	
	aged 50-69 years was rated as a weak recommendation based on moderate-quality	0.79 (0.68-0.90)
Duffy et al, 2012 ¹⁰	Duffy et al, 2012 ¹⁰	
Review of all trials and age groups 0.79 (0.73-0.86)	Review of all trials and age groups	0.79 (0.73-0.86)

RR=relative risk.

ebruary 10, 2014 ders and Footers> to alter this text

Mortality - Observational studies

- 1. Ecological comparing areas or periods when screening was or wasn't in place
 - Diverse findings
 - Many factors have changed substantially and The Panel felt that these studies could not allow for this
- 2. Case Control
- 3. Incidence based mortality
 - Generally showed more benefit than the trials but felt this may reflect residual bias. Are in the same direction as the trials.

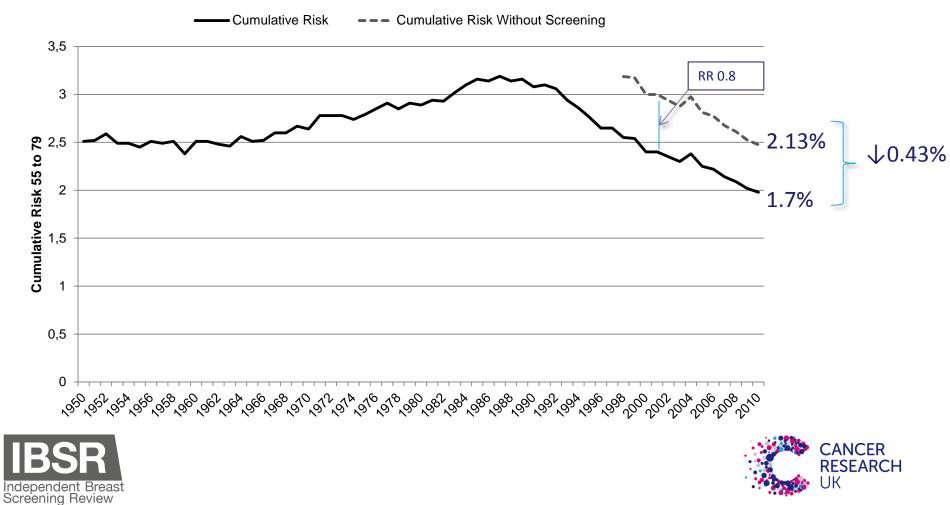
Mortality – uncertainty around relative risk reduction

- External validity do changes in treatment reduce relevance of screening?
- The panel felt effects of treatment and screening likely to be independent
- Effects of treatment would affect absolute benefit but not relative benefit of screening.

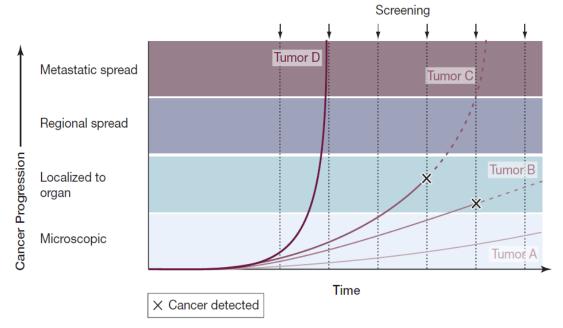
Mortality – Absolute benefit

- Estimates vary between one breast cancer death prevented for 100 women to 2000 women invited to screening
- Number of "lives saved" (premature cancer deaths prevented")
 - Depends on underlying rate of BC death
 - Under 50 smaller gain as fewer deaths
- Panel assumed effect on mortality only seen ages 55-79 (i.e.
 5-10 years after screening ages 50-69)
- Risk of death from breast cancer between ages 55-79 for a woman aged 50 is 1.70%
- This figure includes benefit of screening

Mortality – Absolute benefit


- Without screening, 1.70% would be 2.13% [2.13 x
 0.80 = 1.70] difference is therefore 0.43%
- 43 breast cancer deaths prevented for every 10,000 women invited to screening
- One breast cancer death prevented for every 235 women invited
- Figures have the same uncertainties as for the calculation of relative risk reduction

Back-extrapolation


 Take UK mortality data for the screening age women and "subtract" the 20% reduction in mortality

Breast Cancer Mortality, UK, 1950 to 2010

Overdiagnosis

- Definition:
- Detection of cancers on screening that would not have been found were it not for the screening test

- Does it occur and if so, how common is it?
- Essentially occurs if woman dies before the end of the lead time for her cancer.
 CANCER

Panel decided to include invasive and DCIS since both treated

RESEARCH

JК

Overdiagnosis

- Screening is expected to lead to earlier diagnosis
- This will cause a higher incidence in invited group compared to control in the short term
- Cessation of screening should lead a relative fall in incidence in the screened population compared to control (the "compensatory drop")
- Once lead time of screening exhausted, incidence should be the same.

Estimating overdiagnosis

- Ideally compare group of women invited to screening for 20 years aged 50-70 with an exactly comparable (age, risk CA breast etc.) uninvited group
- Follow to death
- Any excess of breast cancers in the invited group would represent overdiagnosis
- Such a study does not exist

Overdiagnosis – estimate from RCT's

- Need to follow up beyond screening
 - To allow for compensatory drop and lead time
- Lead time difficult to estimate
- Minimum 5-10 years follow up after end of screening
- Screening of the control group makes it difficult to estimate overdiagnosis since lose compensatory drop and the control group will include overdiagnosed cases.

Overdiagnosis – estimate from RCT's

- Only 4 trials did not have screening of control group HIP, Malmo, Canada 1 and 2
- HIP excluded by The Panel since difficult to obtain consistent figures and some included LCIS

Overdiagnosis – methods of calculating

- General agreement on the numerator
- Disagreement on the denominator if a % what is it a % of?
- At least 10 different ways of estimating it.
- The Panel focussed on 4.

Overdiagnosis – methods of calculating

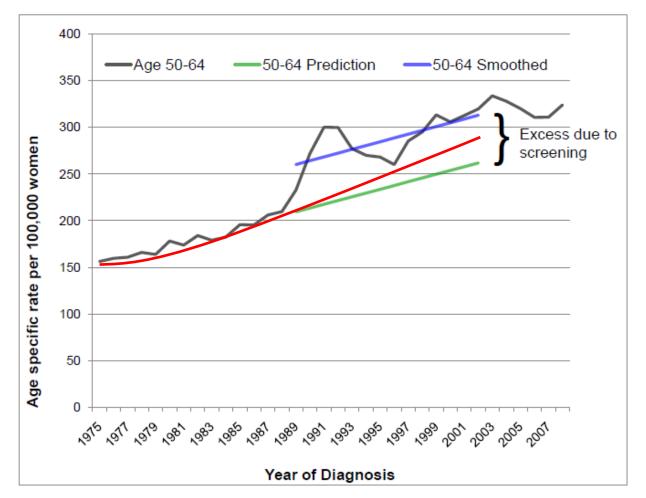
- Excess of cancers as a proportion of cancers diagnosed
- A. over whole follow up period in unscreened women
- B. over whole follow up period in women invited for screening
- C. during screening period in women invited for screening
- D. detected by screening in women invited for screening

Overdiagnosis – estimate from RCT's

	А	В	С	D
Malmö I	11.7%	10.5%	18.7%	29.1%
55-69	(82/698)	(82/780)	(82/438)	(82/282)
Canada 1	14.1%	12.4%	22.7%	29.4%
	(82/581)	(82/663)	(82/361)	(82/279)
Canada 2	10.7%	9.7%	16.0%	19.8%
	(67/626)	(67/693)	(67/420)	(67/338)

Overdiagnosis – estimate from RCTs

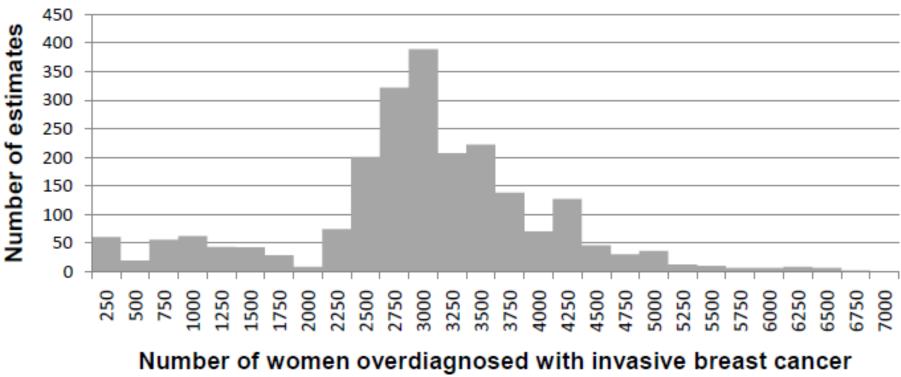
- The Panel thought that the most useful estimates are
- From a population perspective, the excess cancers as a proportion of all the cancers diagnosed from the start of screening to the end of follow up (method B)
 - RCT meta analysis 11%
- From the woman's perspective, the excess cancers as a proportion of the cancers diagnosed during screening (method C)
 - RCT meta analysis 19%
- Both estimates are derived from limited data and share all the uncertainties of the mortality data.


Overdiagnosis – observational studies

- 1. Compare post-screening incidence breast cancer (BC) with extrapolation of pre-screening incidence: depends heavily assumptions about likely incidence.
- 2. Compare incidence BC in screened and unscreened countries or within countries. Depend on allowing for differences and fully accounting for lead time
- Essentially What would have happened if there had not been any screening....
 - Family history, Age, Menopause, Diet, Exercise, Race, HRT, Etc.....

Estimating overdiagnosis

Breast cancer age specific incidence rates, England 1975 to 2008


Figure 1 Breast cancer age specific incidence rates, England 1975 to 2008, age 50-64 with expected, observed and smoothed data

Assumptions

- Same dataset can give different answers:

per year

Overdiagnosis – Panel conclusion

- Overdiagnosis occurs.

- Difficult to estimate its magnitude
- Best estimate is from the RCTs without screening of the control group
- For UK women invited aged 50 for 20 years' screening
 - Apply the 19% risk to the cumulative incidence of breast cancer (invasive and in-situ) in women aged 50-69 in UK
 - One in 77 women aged 50 invited to screening for 20 years would have an overdiagnosed cancer
 - Equivalent to a rate of 129/10,000 women invited.
 - ~1% risk for a woman entering UK screening

Ductal carcinoma in situ (DCIS)

- Found more commonly via screening compared with symptomatic practice
- Natural history difficult to define need surgery to exclude invasive component
- Approx. 10% invasive relapse rate at 10 years in UK/ANZ DCIS trial if WLE only
- DCIS can relapse will it progress within the lifetime of the woman?

Other harms

For example:

- Biopsy rate
- Complications of surgery, radiotherapy, chemotherapy
- Psychological harms
- All important but generally, magnitude agreed and risks outweighed by mortality benefit.

Main Conclusions

- **1**. Breast screening extends lives
- 2. Overdiagnosis occurs

Benefit

Best estimate is a 20% reduction in breast cancer mortality

- One breast cancer death prevented for every 235 women invited to screening
- For the UK NHSBSP, estimate prevents about 1300 breast cancer deaths/year
- ~ 22,000 life-years saved

Overdiagnosis

Best estimate is

- 11% of cancers diagnosed during lifetime during and after screening
- 19% of cancers diagnosed during the screening period

Summary figures

Panel's review of the evidence

- RCTs still relevant and best evidence
- For 10,000 women invited to screening for 20 yrs. from age 50 (to 70)
 - 681* cancers diagnosed
 - 129* of these represent overdiagnosis
 - 43* deaths from breast cancer prevented
 - If attend screening for 20 yrs, just over 1% chance of being diagnosed with an overdiagnosed cancer
- *these figures are <u>estimates</u> with a large range of uncertainty

Recommendations

Breast screening should continue

 Balance of benefits and harms should be communicated to all women invited for screening, so they can make an informed decision

Research Recommendations

- Support the ongoing meta-analysis of centrally collated individual patient data from all the trials
- Work to more accurately estimate and identify overdiagnosis
- DCIS RCT's and the Sloane Project
- Evaluate the cost effectiveness of the Screening Programme

Acknowledgments

- The Panel would like to thank
- All the experts who provided verbal and/or written evidence
- DH who funded the support for the review to occur
- CRUK for providing the staff to support the Panel's work
- Thank you for listening

