

False-positive results in mammographic screening in Europe A literature review and a survey of service screening programmes

Solveig Hofvind, Bologna, January 30, 2014

ORIGINAL ARTICLE

False-positive results in mammographic screening for breast cancer in Europe: a literature review and survey of service screening programmes

Solveig Hofvind, Antonio Ponti, Julietta Patnick, Nieves Ascunce, Sisse Njor, Mireille Broeders, Livia Giordano, Alfonso Frigerio and Sven Törnberg The EUNICE Project and Euroscreen Working Groups (Members of the EUNICE Project and Euroscreen Working Groups listed at end of paper)

> J Med Screen 2012;**19 Suppl 1**:57–66 DOI: 10.1258/jms.2012.012083

Definition False positive screening results

Findings on the screening mammograms \rightarrow recall for further assessment \rightarrow negative / normal / benign

Further assessment:

Additional imaging and ultrasound

- no diagnosis of DCIS or breast cancer

Additional imaging, ultrasound and needle biopsy (FNAC, CNB, and/or SB/OB)

- no diagnosis of DCIS or breast cancer

Annals of Internal Medicine

REVIEW

Systematic Review: The Long-Term Effects of False-Positive Mammograms

Noel T. Brewer, PhD; Talya Salz, BS; and Sarah E. Lillie, MPH

Background: Although abnormal screening mammograms deleteriously affect the psychological well-being of women during the time immediately surrounding the tests, their long-term effects are poorly understood.

Purpose: To characterize the long-term effects of false-positive screening mammograms on the behavior and well-being of women 40 years of age or older.

Data Sources: English-language studies from the MEDLINE, Web of Science, EMBASE, CINAHL, PsycINFO, and ERIC databases through August 2006.

Study Selection: Studies were identified that examined the effects of false-positive results of routine screening mammography on women's behavior, well-being, or beliefs.

Data Extraction: Two investigators independently coded study characteristics, quality, and effect sizes.

Data Synthesis: 23 eligible studies (n = 313967) were identified. A random-effects meta-analysis showed that U.S. women who received false-positive results on screening mammography were more likely to return for routine screening than those who received

normal results (risk ratio, 1.07 [95% CI, 1.02 to 1.12]). The effect was not statistically significant among European women (risk ratio, 0.97 [CI, 0.93 to 1.01]), and Canadian women were less likely to return for routine screening because of false-positive results (risk ratio, 0.63 [CI, 0.50 to 0.80]). Women who received false-positive results conducted more frequent breast self-examinations and had higher, but not apparently pathologically elevated, levels of distress and anxiety and thought more about breast cancer than did those with normal results.

Limitations: Correlational study designs, a small number of studies, a lack of clinical validation for many measures, and possible heterogeneity.

Conclusions: Some women with false-positive results on mammography may have differences in whether they return for mammography, occurrence of breast self-examinations, and levels of anxiety compared with women with normal results. Future research should examine how false-positive results on mammography affect other outcomes, such as trust and health care use.

Ann Intern Med. 2007;146:502-510. For author affiliations, see end of text. www.annals.org

Conclusions: Some women with false-positive results on mammography may have differences in whether they return for mammography, occurrence of breast self-examinations, and levels of anxiety compared with women with normal results. Future research should examine how false-positive results on mammography affect other outcomes, such as trust and health care use.

Recall mammography and psychological distress

Inger Schou Bredal^{a,*}, Rolf Kåresen^a, Per Skaane^b, Kari Sletten Engelstad^c, Øivind Ekeberg^d

CONCLUDING STATEMENT:

Recall after mammography was associated with transiently increased anxiety. Four weeks after screening, the level of anxiety was the same and depression was lower compared with the general female Norwegian population. The women were almost unanimously satisfied with their participation in the screening, would participate again and would recommend other women to participate.

Risk of false positive screening results

Recall rate

- Age groups included
- Screening interval
- One or two views
- Interpretation procedure (single vs double reading, CAD etc)
- Use of short term follow-up
- Compliance in the program

Risk of false positive screening results

Methodological issues

- The number of screening rounds with obervational data
- Independence in the screening results between the screening rounds?

European studies Cumulative risk of a false positive screening result

Women aged 50-69 years As of 2011 – four studies: three papers and one letter to editor

Hofvind et al.	2004	Norway
Njor et al.	2007	Fyn, Denmark,
		Cph, Denmark
Salas et al.	2011	Spain
Puliti et al.*	2011	Italy

*letter to editor

European studies Cumulative risk of a false positive screening result

			Screening rounds	n
Hofvind et al.	2004	Norway	3	83 416
Njor et al.	2007	Fyn, Denmark	., 5	21 261
		Cph, Denmark	K 9	9 039
Salas et al.	2011	Spain	6	251 275
Puliti et al.*	2011	Italy	7	28 500

*letter to editor

European studies Cumulative risk of a false positive screening result

			Screening rounds	n
Hofvind et al.	2004	Norway	3	83 416
Njor et al.	2007	Fyn, Denmark	., 5	21 261
		Cph, Denmark	K 9	9 039
Salas et al.	2011	Spain	6	251 275
Puliti et al.*	2011	Italy	7	28 500

*letter to editor

European studies Cumulative risk of a false positive screening result

			All recalls
Hofvind et al.	2004	Norway	20.8%
Njor et al.	2007	Fyn, Denmark,	9.9%
		Cph, Denmark	22.6%
Salas et al.	2011	Spain	20.4%
Puliti et al.*	2011	Italy	<u> 15.2%</u>
*letter to editor, estimat	19.7%		

European studies Cumulative risk of a false positive screening result

				All recalls	Needle biopsy
Ho	ofvind et al.	2004	Norway	20.8%	6.3%
Njo	or et al.	2007	Fyn, Denmark,	9.9%	-
			Cph, Denmark	22.6%	-
Sa	las et al.	2011	Spain	20.4%	1.8%
<u>Pu</u>	liti et al.*	2011	Italy	15.2%	1.8%
*letter to editor, estimated on seven screening rounds			19.7%	2.9%	
Roman et al, 2013; From Norway:					
231,310 women, 50-51 at first mammography;			20.0%	4.1%	

The New England Journal of Medicine

© Copyright, 1998, by the Massachusetts Medical Society

VOLUME 338

April 16, 1998

NUMBER 16

TEN-YEAR RISK OF FALSE POSITIVE SCREENING MAMMOGRAMS AND CLINICAL BREAST EXAMINATIONS

JOANN G. ELMORE, M.D., M.P.H., MARY B. BARTON, M.D., M.P.P., VICTORIA M. MOCERI, PH.C., SARAH POLK, B.A., PHILIP J. ARENA, M.D., AND SUZANNE W. FLETCHER, M.D.

ABSTRACT

Background The cumulative risk of a false positive result of a breast-cancer screening test is unknown. *Methods* We performed a 10-year retrospective cohort study of breast-cancer screening and diagnostic

evaluations among 2400 wome vears old at study entry. Man breast examinations that were i minate, aroused a suspicion of recommendations for additiona whom breast cancer was not next year were considered to b

AMMOGRAPHY and clinical breast examination are the two principal means of screening for breast cancer.1 The effectiveness of breast-cancer screening has been well documented in eight randomized

Annals of Internal Medicine

Original Research

30%

Cumulative Probability of False-Positive Recall or Biopsy Recommendation After 10 Years of Screening Mammography

A Cohort Study

Rebecca A. Hubbard, PhD; Karla Kerlikowske, MD; Chris I. Flowers, MD; Bonnie C. Yankaskas, PhD; Weiwei Zhu, MS; and Diana L. Miglioretti, PhD

Background: False-positive mammography results are common. Biennial screening may decrease the cumulative probability of falsepositive results across many years of repeated screening but could also delay cancer diagnosis.

Objective: To compare the cumulative probability of false-positive results and the stage distribution of incident breast cancer after 10 years of annual or biennial screening mammography.

and 41.6% (CI, 40.6% to 42.5%) with biennial screening. Cumulative probability of false-positive biopsy recommendation was 7.0% (CI, 6.1% to 7.8%) with annual and 4.8% (CI, 4.4% to 5.2%) with biennial screening. Estimates were similar when screening began at age 50 years. A non-statistically significant increase in the proportion of late-stage cancers was observed with biennial compared with annual screening (absolute increases, 3.3 percentage points [CI, -1.1 to 7.8 percentage points] for women age 40 to 49 years and 2.3 percentage points [CI, -1.0 to 5.7 percentage

Design: Prospective cohort study.

Recall rates

U.S. – U.K

Crude 50-69 years, subsequent exams, 1996-1999: 8.0% in the U.S. 3.6% in the UK

Vermont – Norway

Age-adjusted 50-69 years, subsequent exams, 1997-2003: 9.8% in Vermont, U.S. 2.7% in Norway

Smith-Bindman et al, JAMA 2003 Hofvind et al, J Natl Cancer Inst 2007

From the EUNICE project

Subsequent screens

	Period	FA (%)	Needle biopsy (%)
Belgium Flanders	2005	3.5	_
Denmark	2005	2.0	_
Copenhagen			
Estonia	2005-2006	-	-
Finland	2005	2.7	_
Hungary	2005	5.2	1.5
Budapest [*]			_
Italy	2005	4.4	0.9
Luxembourg	2004-2005	5.3	_
Norway	2005-2006	3.1	1.1
Poland	2007	7.1	-
Portugal centre	2005	2.4	_
Portugal north Republic of	2005	1.9	-
Republic of	2005-2006	2.0	_
Ireland**			
Spain Galicia ¹¹	2005-2006	1.3	0.3
Spain Navarra	2005-2006	3.8	0.6
Spain Valencia	2005-2006	5.3	0.6
Sweden Stockholm	2005	2.6	-
Switzerland	2005	-	_
Friboura			
UK England ^{‡‡}	2005-2007	3.7	1.5

From the EUNICE project

0.10 Czech Republic 0.08 Further assessment rate 0.06 Valencia Budapest 0.04 Italy ٠ England Navarra Norway 0.02 Netherlands Galicia 0.00 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Needle biopsy (%)

(b) Needle Biopsy (P-value=0.88)

A recall for further assessment with negative/benign outcome

an unnesessary assessment

Summing up

About 20 in 100 women will experience a false positive screneing result during their screening period (10 exams every two years, from age 50)

17 additional imaging/ultrasound3 a FNAC/biopsy

Negative consequences of a false positive screening result

Waiting time from assessment to diagnosis associated with anxiety Scar tissue after open surgical biopsies